Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Biomolecules ; 13(8)2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37627288

RESUMO

The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.


Assuntos
Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Conformação Proteica , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Humanos , Microscopia Crioeletrônica , Proteólise , Ubiquitina/metabolismo
2.
Eur J Immunol ; 52(2): 338-351, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34755333

RESUMO

PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias , Linhagem Celular Tumoral , Bases de Dados de Ácidos Nucleicos , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/enzimologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia
3.
Sci Rep ; 11(1): 22623, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799653

RESUMO

This two-part preclinical study aims to evaluate prostate specific membrane antigen (PSMA) as a valuable target for expression-based imaging applications and to determine changes in target binding in function of varying apparent molar activities (MAapp) of [18F]AlF-PSMA-11. For the evaluation of PSMA expression levels, male NOD/SCID mice bearing prostate cancer (PCa) xenografts of C4-2 (PSMA+++), 22Rv1 (PSMA+) and PC-3 (PSMA-) were administered [18F]AlF-PSMA-11 with a medium MAapp (20.24 ± 3.22 MBq/nmol). SUVmean and SUVmax values were respectively 3.22 and 3.17 times higher for the high versus low PSMA expressing tumors (p < 0.0001). To evaluate the effect of varying MAapp, C4-2 and 22Rv1 xenograft bearing mice underwent additional [18F]AlF-PSMA-11 imaging with a high (211.2 ± 38.9 MBq/nmol) and/or low MAapp (1.92 ± 0.27 MBq/nmol). SUV values showed a significantly increasing trend with higher MAapp. Significant changes were found for SUVmean and SUVmax between the high versus low MAapp and medium versus low MAapp (both p < 0.05), but not between the high versus medium MAapp (p = 0.055 and 0.25, respectively). The effect of varying MAapp was more pronounced in low expressing tumors and PSMA expressing tissues (e.g. salivary glands and kidneys). Overall, administration of a high MAapp increases the detection of low expression tumors while also increasing uptake in PSMA expressing tissues, possibly leading to false positive findings. In radioligand therapy, a medium MAapp could reduce radiation exposure to dose-limiting organs with only limited effect on radionuclide accumulation in the tumor.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glutamato Carboxipeptidase II/biossíntese , Glutaratos/farmacocinética , Glicoproteínas de Membrana/biossíntese , Ácidos Fosfínicos/farmacocinética , Neoplasias da Próstata/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/patologia , Ligação Proteica , Compostos Radiofarmacêuticos , Distribuição Tecidual
4.
Immunopharmacol Immunotoxicol ; 43(4): 471-477, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34184962

RESUMO

OBJECTIVE: This study aimed to elucidate the role of ribophorin II (RPN2) in nasopharyngeal cancer (NPC) cell survival and death. RPN2 expression was upregulated in 22 human NPC specimens and 5-8F and CNE1 cells compared with that in adjacent normal tissues and normal nasopharyngeal NP69 cells. MATERIALS AND METHODS: CCK-8 and colony formation assays indicated that the silencing of RPN2 hindered the proliferation and growth of 5-8F and CNE1 cells. RESULTS: RPN2 expression was upregulated in 22 human NPC specimens as well as in 5-8F and CNE1 cells compared with that in adjacent normal tissues and NP69 cells. CCK-8 and colony formation assays indicated that the silencing of RPN2 reduced the proliferation and growth of 5-8F and CNE1 cells. Annexin V/PI flow cytometry and Bcl-2/Bax analysis showed that RPN2 silencing led to increased apoptosis. Moreover, JAK1 was found to interact with RPN2, and total JAK1, STAT3, and phosphorylated STAT3 levels were dramatically decreased in cells with RPN2 silencing. Furthermore, the nuclear localization of STAT3 was blocked by the silencing of RPN2. The administration of the STAT3 activator colivelin could offset the inhibitory effect of RPN2 silencing on the survival and apoptosis of NPC cells. CONCLUSION: RPN2 is upregulated in NPC tissues or cells, and RPN2 silencing repressed NPC cell proliferation and elicited apoptosis. RPN2 overexpression is possibly associated with JAK1/STAT3 silencing and activation. Finally, RPN2 represents a promising target for NPC treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hexosiltransferases/biossíntese , Janus Quinase 1/biossíntese , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Fator de Transcrição STAT3/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Hexosiltransferases/genética , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Complexo de Endopeptidases do Proteassoma/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética
6.
Blood Cancer J ; 10(12): 125, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318477

RESUMO

Protein homeostasis is critical for maintaining eukaryotic cell function as well as responses to intrinsic and extrinsic stress. The proteasome is a major portion of the proteolytic machinery in mammalian cells and plays an important role in protein homeostasis. Multiple myeloma (MM) is a plasma cell malignancy with high production of immunoglobulins and is especially sensitive to treatments that impact protein catabolism. Therapeutic agents such as proteasome inhibitors have demonstrated significant benefit for myeloma patients in all treatment phases. Here, we demonstrate that the 11S proteasome activator PA28α is upregulated in MM cells and is key for myeloma cell growth and proliferation. PA28α also regulates MM cell sensitivity to proteasome inhibitors. Downregulation of PA28α inhibits both proteasomal load and activity, resulting in a change in protein homeostasis less dependent on the proteasome and leads to cell resistance to proteasome inhibitors. Thus, our findings suggest an important role of PA28α in MM biology, and also provides a new approach for targeting the ubiquitin-proteasome system and ultimately sensitivity to proteasome inhibitors.


Assuntos
Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/enzimologia , Proteínas Musculares/biossíntese , Complexo de Endopeptidases do Proteassoma/biossíntese , Inibidores de Proteassoma/farmacologia , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Proteínas Musculares/genética , Complexo de Endopeptidases do Proteassoma/genética
7.
Dokl Biochem Biophys ; 493(1): 198-200, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32894464

RESUMO

The role of proteasome proteins and proteins of the ERAD system in the cytotoxicity of type II ribosome-inactivating proteins ricin and viscumin was investigated. For this, the cell line of colorectal adenocarcinoma HT29, as well as the HT29-sh002 line obtained on its basis, were used. On the basis on the proteome analysis of these lines and the estimation of the proportion of inactivated ribosomes, it was shown that the contribution of the proteasome to the degradation of the catalytic subunits of toxins is different. The role of the Cdc37 co-chaperone in maintaining the stability of A subunit of viscumin in the cytoplasm is shown.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Ricina/farmacologia , Toxinas Biológicas/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteínas de Ciclo Celular/genética , Chaperoninas/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citoplasma/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribossomos/metabolismo , Células Tumorais Cultivadas
8.
Mol Brain ; 13(1): 4, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931843

RESUMO

While chronic restraint stress (CRS) results in depression-like behaviors possibly through oxidative stress in the brain, its molecular etiology and the development of therapeutic strategies remain elusive. Since oxidized proteins can be targeted by the ubiquitin-proteasome system, we investigated whether increased proteasome activity might affect the stress response in mice. Transgenic mice, expressing the N-terminally deleted version of α3 subunit (α3ΔN) of the proteasome, which has been shown to generate open-gated mutant proteasomes, in the forebrain were viable and fertile, but showed higher proteasome activity. After being challenged with CRS for 14 d, the mutant mice with hyperactive proteasomes showed significantly less immobility time in the forced swimming test compared with their wild-type littermates, suggesting that the α3ΔN transgenic mice are resistant to CRS. The accumulation of ER stress markers, such as polyubiquitin conjugates and phospho-IRE1α, was also significantly delayed in the hippocampus of the mutants. Notably, α3ΔN mice exhibited little deficits in other behavioral tasks, suggesting that stress resilience is likely due to the degradation of misfolded proteins by the open-gated proteasomes. These data strongly indicate that not only is the proteasome a critical modulator of stress response in vivo but also a possible therapeutic target for reducing chronic stress.


Assuntos
Depressão/enzimologia , Hipocampo/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/fisiologia , Restrição Física/efeitos adversos , Animais , Ansiedade/etiologia , Doença Crônica , Condicionamento Clássico , Depressão/etiologia , Depressão/genética , Modelos Animais de Doenças , Teste de Labirinto em Cruz Elevado , Estresse do Retículo Endoplasmático , Indução Enzimática , Comportamento Exploratório , Medo , Feminino , Proteínas Intrinsicamente Desordenadas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas
9.
Pathol Oncol Res ; 26(3): 1921-1934, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31853860

RESUMO

Tamoxifen is the most important treatment component in estrogen receptor positive (ER+) breast carcinoma patients. Tamoxifen resistance incidence presents an important obstacle in clinical treatment. Mechanisms underlying tamoxifen refractory are not completely understood. Although elevated expression of Gankyrin (P28GANK) and stem cell markers Nanog, Oct-4 and Sox-2 have been reported in breast carcinoma, their role in tamoxifen resistance progression has not been explored. In the present study, P28GANK and stem cell markers Nanog, Oct-4 and Sox-2 expression were evaluated using quantitative RT-PCR and immunohistochemical technology in 72 breast carcinoma patients who received tamoxifen as adjuvant anti-hormone treatment. Expression data were correlated with the clinical outcome and survival of patients. Data analysis showed that P28GANK, Oct-4 and Sox-2 transcripts were significantly overexpressed in tamoxifen resistance patients. Immunohistochemical staining indicated that protein expression of P28GANK and Oct-4 were also significantly higher in tamoxifen resistance patients. We have shown a positive correlation between mRNA and protein expression of P28GANK, Oct-4 and Sox-2. Multivariate logistic regression analysis indicated that P28GANK (P = 0.002) and Oct-4 (P = 0.013) overexpression could be negative independent factors of disease outcome. Additionally, in the whole study group, multivariate Cox regression analysis revealed that high expression of P28GANK and Oct-4 remained significant and unfavorable predictive factors for patients' survival. These findings suggest that Gankyrin and Oct-4 overexpression could promote tamoxifen refractory in breast cancer patients. More studies are warranted to clarify the predictive role of these potential biomarkers for patients who don't benefit from tamoxifen treatment and their possible application as prognostic markers in ER+ tamoxifen-treated breast carcinoma patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fator 3 de Transcrição de Octâmero/biossíntese , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Tamoxifeno/uso terapêutico , Resultado do Tratamento
10.
Neuroreport ; 30(15): 1031-1038, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31503210

RESUMO

OBJECTIVES: The aim of this study was to determine the expression level of immunoproteasome and its clinical significance in glioma preliminarily. Furthermore, we studied the function and molecular mechanism of proteasome inhibitor ONX 0912 on glioma cell. MATERIALS AND METHODS: The expression of immunoproteasome in glioma and tumor-adjacent brain tissues was detected by western blot. Immunohistochemical technique was used to detect the expression of low-molecular-mass polypeptide 7 in 55 cases of glioma tissues and 6 cases of tumor-adjacent brain tissues. Chi-square test was used to analyze the relationship between the expression level of low-molecular-mass polypeptide 7 and clinical characteristics. Kaplan-Meier method and Cox regression analysis were applied to analyze the correlation between low-molecular-mass polypeptide 7 expression and prognosis of patients. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium) (MTS) proliferation assay was introduced to detect the impact of ONX 0912 on proliferation of glioma cells. Western blot was used to detect the apoptosis- and autophagy-related protein in glioma cell treated with ONX 0912. RESULTS: Our results showed that only low-molecular-mass polypeptide 7 expression was notably upregulated in gliomas in comparison with tumor-adjacent brain tissues and further increased in malignant gliomas compared with benign gliomas (P < 0.01). In the multivariate Cox proportional regression analyses, it was evident that low-molecular-mass polypeptide 7 was an independent unfavorable prognostic factor (P < 0.05). The results of MTS assay showed that ONX 0912 could inhibit the proliferation of glioma cell. Besides, we found that ONX 0912 could prompt apoptosis and autophagosome accumulation, which may be responsible for inhibiting glioma cell proliferation. CONCLUSION: In conclusion, our results indicated that low-molecular-mass polypeptide 7 might be a candidate prognostic biomarker, and proteasome inhibitor ONX 0912 might act as a potential treatment agent for glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/biossíntese , Anticorpos Antineoplásicos/imunologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioma/patologia , Humanos , Imuno-Histoquímica , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas de Ligação a RNA/metabolismo
11.
Sci Rep ; 9(1): 12418, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455793

RESUMO

The 26S proteasome conducts the majority of regulated protein catabolism in eukaryotes. At the heart of the proteasome is the barrel-shaped 20S core particle (CP), which contains two ß-rings sandwiched between two α-rings. Whereas canonical CPs contain α-rings with seven subunits arranged α1-α7, a non-canonical CP in which a second copy of the α4 subunit replaces the α3 subunit occurs in both yeast and humans. The mechanisms that control canonical versus non-canonical CP biogenesis remain poorly understood. Here, we have repurposed a split-protein reporter to identify genes that can enhance canonical proteasome assembly in mutant yeast producing non-canonical α4-α4 CPs. We identified the proteasome subunit α1 as an enhancer of α3 incorporation, and find that elevating α1 protein levels preferentially drives canonical CP assembly under conditions that normally favor α4-α4 CP formation. Further, we demonstrate that α1 is stoichiometrically limiting for α-ring assembly, and that enhancing α1 levels is sufficient to increase proteasome abundance and enhance stress tolerance in yeast. Together, our data indicate that the abundance of α1 exerts multiple impacts on proteasome assembly and composition, and we propose that the limited α1 levels observed in yeast may prime cells for alternative proteasome assembly following environmental stimuli.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/enzimologia , Citoplasma/enzimologia , Citoplasma/genética , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Gene ; 702: 66-74, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30930224

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver with high mortality and frequent recurrence. Although various therapies provide potential cure for HCC patients, unfortunately the five-year survival rate of advanced HCC remains dismal. It is critical to explore the pathogenesis of HCC and identify novel biomarkers for early HCC diagnosis. PSMD4 is a major receptor of the 26S proteasome involved in ubiquitindependent and proteasome-mediated protein degradation. In our study, PSMD4 was overexpressed in HCC tissues and cell lines determined by Northern blot, western blot and immunohistochemistry. The silencing of PSMD4 blocked cell proliferation and tumor growth, induced cell apoptosis and inhibited the proteasome activity. Western blot results showed that the knockdown of PSMD4 blocked the expression of cyclooxygenase 2 (COX2), phosphorylated Sarcoma tyrosine kinase (P-SRC) and Bcl-2, but improved the levels of p53 and Bax in HCC, lung cancer, colorectal cancer, breast cancer and endometrial cancer cell lines. Taken together, these findings indicated that the subunit of 26S proteasome PSMD4 exerts as an oncogene in HCC and other cancers via regulating the expression p53, Bcl-2 and Bax. These findings enriched the pathogenesis of HCC, and provided a new biomarker for cancers diagnosis and a new target for cancers therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Animais , Apoptose , Carcinogênese , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA
13.
Exp Eye Res ; 181: 197-207, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30738879

RESUMO

Pseudoexfoliation (PEX), an ocular disorder involving deposition of proteinaceous fibrils on the surface of anterior eye tissues, is a major contributing factor to worldwide glaucoma. Excessive production and accumulation of fibrillar materials in PEX could be an indication of proteostasis imbalance. This study aims at investigating the differential expression of various genes involved in unfolded protein response and ubiquitin proteasome pathway in pseudoexfoliation (PEX) patients compared to non-PEX controls using lens capsule tissue as the study material. The custom RT2 Profiler PCR array was used to identify a set of stress-related candidate genes that were differentially expressed in PEX. The expression of the highly deregulated genes was validated by qRT-PCR and subsequently their protein expression was checked through immunoblotting and immunostaining. Proteasome-Glo based assay and TUNEL assay were employed to detect specific proteasomal activity and apoptotic activity, respectively in the study subjects. Increased ER stress markers, Synoviolin1, Eukaryotic initiation factor 2-alpha kinase 3, DnaJ (Hsp40) homolog, subfamily B, member 11, Caspase 12, Heat shock 70 kDa protein 5, Heat shock 60 kDa protein 1 and Calnexin were observed in the lens capsule of PEX individuals compared to age-matched controls. On the other hand, increased ubiquitin B mRNA expression followed by significant downregulation of proteasome subunits; 26 S proteasome non-ATPase regulatory subunit 1, and proteasome subunit alpha-type 5 was found in pseudoexfoliation syndrome (PEXS) individuals. Decrease in chymotrypsin-like proteasome activity and increased apoptosis were also observed in PEX subjects. The present findings provide evidence for alterations in endoplasmic reticulum-related stress response and ubiquitin proteasome function in lens capsule of PEX individuals. Altogether, our study has identified deregulated expression of candidate genes in ER-UPR pathway and implicates proteasome impairment as a causative factor in PEX pathogenesis.


Assuntos
Estresse do Retículo Endoplasmático , Síndrome de Exfoliação/genética , Regulação da Expressão Gênica , Cápsula do Cristalino/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , RNA/genética , Apoptose , Síndrome de Exfoliação/metabolismo , Síndrome de Exfoliação/patologia , Feminino , Humanos , Cápsula do Cristalino/patologia , Masculino , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas , Resposta a Proteínas não Dobradas/genética
14.
J Biol Chem ; 294(6): 2036-2045, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559296

RESUMO

Inhibition of the proteasome leads to proteotoxic stress, which is characterized by the buildup of ubiquitinated proteins that cannot be degraded properly. The transcription factor Nrf1 (also called NFE2L1) counteracts proteotoxic stress by inducing transcription of proteasome subunit genes, resulting in the restoration of proteasome activity. Further understanding of the Nrf1 pathway is therefore of interest in both neurodegeneration, where proteasome activity could be enhanced, and cancer, where suppression of this pathway could potentiate the cell-killing effect mediated by proteasome inhibitor drugs. Here, to identify novel regulators of Nrf1, we performed an RNAi screen in an engineered cell line, reporting on Nrf1 transcriptional activity. In addition to validating known regulators, we discovered that the AAA+ ATPase RUVBL1 is necessary for Nrf1's transcriptional activity. Given that RUVBL1 is part of different multisubunit complexes that play key roles in transcription, we dissected this phenomenon further and found that the TIP60 chromatin-regulatory complex is essential for Nrf1-dependent transcription of proteasome genes. Consistent with these observations, Nrf1, RUVBL1, and TIP60 proteins were co-recruited to the promoter regions of proteasome genes after proteasome inhibitor treatments. More importantly, depletion of RUVBL1 or TIP60 in various cancer cells sensitized them to cell death induced by proteasome inhibition. Overall, our study provides a framework for manipulating the TIP60-Nrf1 axis to alter proteasome function in various human diseases, including cancer.


Assuntos
Lisina Acetiltransferase 5/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Elementos de Resposta , Transativadores/metabolismo , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Lisina Acetiltransferase 5/genética , Camundongos , Camundongos Knockout , Fator 1 Relacionado a NF-E2/genética , Células NIH 3T3 , Complexo de Endopeptidases do Proteassoma/genética , Transativadores/genética
15.
Cell Physiol Biochem ; 47(4): 1729-1741, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949789

RESUMO

BACKGROUND/AIMS: Spaceflight negatively influences the function of cartilage tissue in vivo. In vitro human chondrocytes exhibit an altered gene expression of inflammation markers after a two-hour exposure to vibration. Little is known about the impact of long-term vibration on chondrocytes. METHODS: Human cartilage cells were exposed for up to 24 h (VIB) on a specialised vibration platform (Vibraplex) simulating the vibration profile which occurs during parabolic flights and compared to static control conditions (CON). Afterwards, they were investigated by phase-contrast microscopy, rhodamine phalloidin staining, microarray analysis, qPCR and western blot analysis. RESULTS: Morphological investigations revealed no changes between CON and VIB chondrocytes. F-Actin staining showed no alterations of the cytoskeleton in VIB compared with CON cells. DAPI and TUNEL staining did not identify apoptotic cells. ICAM-1 was elevated and vimentin, beta-tubulin and osteopontin proteins were significantly reduced in VIB compared to CON cells. qPCR of cytoskeletal genes, ITGB1, SOX3, SOX5, SOX9 did not reveal differential regulations. Microarray analysis detected 13 differentially expressed genes, mostly indicating unspecific stimulations. Pathway analyses demonstrated interactions of PSMD4 and CNOT7 with ICAM. CONCLUSIONS: Long-term vibration did not damage human chondrocytes in vitro. The reduction of osteopontin protein and the down-regulation of PSMD4 and TBX15 gene expression suggest that in vitro long-term vibration might even positively influence cultured chondrocytes.


Assuntos
Apoptose , Condrócitos/metabolismo , Regulação da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas com Domínio T/biossíntese , Fatores de Transcrição/biossíntese , Vibração , Células Cultivadas , Condrócitos/citologia , Exorribonucleases , Humanos , Proteínas de Ligação a RNA , Proteínas Repressoras , Fatores de Tempo
16.
Skelet Muscle ; 8(1): 18, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855350

RESUMO

BACKGROUND: A low-protein diet supplemented with ketoacids (LPD + KA) maintains the nutritional status of patients with chronic kidney disease (CKD). Oxidative damage and mitochondrial dysfunction associated with the upregulation of p66SHC and FoxO3a have been shown to contribute to muscle atrophy. This study aimed to determine whether LPD + KA improves muscle atrophy and attenuates the oxidative stress and mitochondrial damage observed in CKD rats. METHODS: 5/6 nephrectomy rats were randomly divided into three groups and fed with either 22% protein (normal-protein diet; NPD), 6% protein (low-protein diets; LPD) or 5% protein plus 1% ketoacids (LPD + KA) for 24 weeks. Sham-operated rats with NPD intake were used as the control. RESULTS: KA supplementation improved muscle atrophy and function in CKD + LPD rats. It also reduced the upregulation of genes related to the ubiquitin-proteasome system and 26S proteasome activity, as well as protein and mitochondrial oxidative damage in the muscles of CKD + LPD rats. Moreover, KA supplementation prevented the drastic decrease in activities of mitochondrial electron transport chain complexes, mitochondrial respiration, and content in the muscles of CKD + LPD rats. Furthermore, KA supplementation reversed the elevation in p66Shc and FoxO3a expression in the muscles of CKD + LPD rats. CONCLUSIONS: Our results showed that KA supplementation to be beneficial to muscle atrophy in CKD + LPD, which might be associated with improvement of oxidative damage and mitochondrial dysfunction through suppression of p66Shc and FoxO3a.


Assuntos
Suplementos Nutricionais , Cetoácidos/uso terapêutico , Mitocôndrias Musculares/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal Crônica/complicações , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Cetoácidos/farmacologia , Rim/fisiopatologia , Masculino , Mitocôndrias Musculares/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Nefrectomia , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Ubiquitina/biossíntese , Ubiquitina/genética , Regulação para Cima/efeitos dos fármacos
17.
J Cell Biochem ; 119(8): 6644-6656, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665121

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating disease with the 5-year survival rate less than 6%. In this study, we investigated if inhibiting protein synthesis directly with homoharringtonine (HHT) could induce acute apoptosis in pancreatic cancer cells through quick depletion of multiple short-lived critical members of the central proteome, example, PSMD11(26S proteasome non-ATPase regulatory subunit 11). It was shown that although HHT could inhibit proliferation and growth of MiaPaCa-2 and PANC-1 cells in a time- and dose-dependent manner, only part of pancreatic cancer cells could be induced to die through acute apoptosis. Mechanistic studies showed that HHT could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. Inhibiting MEK1/ERK1/2 pathway with sorafenib could improve the cytotoxity of HHT in vitro and in a genetically engineered mouse model of pancreatic cancer. These results suggest that quick induction of PSMD11 or other acute apoptosis inhibitors through activation of the MEK1/ERK1/2 signaling pathway may be one of the important surviving mechanism which can help pancreatic cancer cells avoid acute apoptosis, it may have significant implications for the targeted therapy of pancreatic ductal adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Mepesuccinato de Omacetaxina/farmacologia , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Biossíntese de Proteínas/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , MAP Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Complexo de Endopeptidases do Proteassoma/genética
19.
Tumour Biol ; 39(10): 1010428317719780, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29020885

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common and serious malignancies in China. However, the exact mechanisms of tumor formation and progression are unclear. As late diagnosis and poor therapeutic efficacy result in lower survival rates, identifying biomarkers for early detection, prognostic evaluation, and recurrence monitoring of ESCC is necessary. Here we analyzed 10 protein expression profiles of ESCC core tissues and paired normal esophageal epithelial tissues using two-dimensional gel electrophoresis. We excised 29 protein spots with two-fold or greater differential expression between cancer and normal tissues and identified them using matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry. The role of PA28ß in ESCC cell was confirmed using cell growth, colony formation and soft agar in TE-1 cells pre- and post- PA28ß transfection. Compared to their expression in the adjacent normal epithelia, 12 proteins, including transgelin (TAGLN), were upregulated in ESCC tissues; 17 proteins, including proteasome activator 28-beta subunit (PA28ß), were downregulated (p < 0.05). Western blotting and immunohistochemistry confirmed that PA28ß was significantly underexpressed in ESCC tissues. The functional assays demonstrate that PA28ß inhibited cell growth, proliferation and malignancy of TE-1 cells. Among the differentially expressed proteins, PA28ß is a potential tumor inhibitor.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Proteínas de Neoplasias/biossíntese , Complexo de Endopeptidases do Proteassoma/biossíntese , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteômica
20.
Tumour Biol ; 39(6): 1010428317704820, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28653901

RESUMO

Although gankyrin is involved in the tumorigenicity and metastasis of some malignancies, the role of gankyrin in gastric cancer is not clear. In this study, we evaluated the function and mechanism of gankyrin in gastric cancer. The effects of gankyrin on gastric cancer growth, proliferation, and chemosensitivity were determined. Gankyrin expression was significantly increased in gastric cancer compared to non-cancerous tissues. This expression significantly enhanced cancer cell proliferation and growth in vitro and in vivo. Suppression of gankyrin downregulated cyclin D1, cyclin E, proliferating cell nuclear antigen, phosphoinositide 3-kinase, AKT, p-PI3K, and p-AKT but upregulated Rb, p53, and p27. However, gankyrin overexpression led to opposite results. Downregulation of gankyrin expression enhanced chemosensitivity to 5-fluorouracil and cisplatin by inducing cell apoptosis. However, upregulation of gankyrin expression led to the opposite outcomes. Gankyrin enhanced gastric cancer cell proliferation by regulating cell cycle-related proteins and by activating PI3K/AKT signaling pathway. Gankyrin played an important role in gastric carcinogenesis and could be a potential effective therapeutic target for enhancing chemosensitivity to 5-fluorouracil and cisplatin.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...